2016年11月27日日曜日

RELATIVISTIC QUANTUM MECHANICS. WAVE EQUATIONS Third Edition

著者:W. Greiner
出版:Springer-Verlag

p.3 (1.7) “\(=c^2t^2-x^2\)”→“\(=c^2t^2-\boldsymbol{x}^2\)”
p.4 l.4 “\(\varDelta=\nabla^2\)”→“\(\varDelta=\boldsymbol{\nabla}^2\)”
p.5 (1.24) “\(E=\pm\sqrt{m_0^2c^2+\boldsymbol{p}^2}\)”→“\(E=\pm c\sqrt{m_0^2c^2+\boldsymbol{p}^2}\)”
p.6 (1.25) “\(\nabla_\mu(\psi^*\nabla^\mu\psi-\psi\nabla^\mu\psi^*)\equiv\nabla_\mu j^\mu=0\)”→“\(\nabla_\mu(\psi^*\nabla^\mu\psi-\psi\nabla^\mu\psi^*)=0\quad\mathrm{or}\quad\nabla_\mu j^\mu=0\)”
l.11 “\(j_0\)”→“\(j_0/c\)”
p.127 Figure 3.1. “\(dx\)”→“\(\mathrm{d}x\)”(6ヶ所)
“\(\mathrm{d}x^\nu\mathrm{d}x_\nu=\delta_\nu^\mu\mathrm{d}x^\nu\mathrm{d}x_\sigma\)”→“\(\mathrm{d}x^\nu\mathrm{d}x_\nu=\delta_\nu^\sigma\mathrm{d}x^\nu\mathrm{d}x_\sigma\)”
p.131 l.24 “see Example 3.1”→“see Exercise 3.1”
p.132 (3.26) “\(\displaystyle\boldsymbol{\hat p}\hspace{-0.43em}/=\mathrm{i}\hbar\gamma^\nu\frac{\partial}{\partial x'^\nu}\)”→“\(\displaystyle{\boldsymbol{\hat p}\hspace{-0.43em}/}'=\mathrm{i}\hbar\gamma^\nu\frac{\partial}{\partial x'^\nu}\)”
(2) “\(\hat{\varGamma}{}_A^2=1\)”→“\(\hat{\varGamma}{}_A^2={\mbox{1}\hspace{-0.25em}\mbox{l}}\)”
p.149 (4.3) “\(\begin{align}&{a^\nu}_\mu\gamma^\mu=\hat P\gamma^\nu\hat P{}^{-1}\quad\mathrm{or}\\&{a^\sigma}_\nu{a^\nu}_\mu\gamma^\mu=\hat P{a^\sigma}_\nu\gamma^\nu\hat P{}^{-1}\end{align}\)”→“\(\begin{align}&{a_\mu}^\nu\gamma^\mu=\hat P\gamma^\nu\hat P{}^{-1}\quad\mathrm{or}\\&{a^\sigma}_\nu{a_\mu}^\nu\gamma^\mu=\hat P{a^\sigma}_\nu\gamma^\nu\hat P{}^{-1}\end{align}\)”
p.151 “cf. Example 3.1”→“cf. Exercise 3.1”
““pseudovector””→““pseudoscalar””
(5.2) “\({\mbox{1}\hspace{-0.25em}\mbox{l}}_{g_{\mu\mu}}\)”→“\(g_{\mu\mu}\mbox{1}\hspace{-0.25em}\mbox{l}\)”
p.152 “\(\begin{eqnarray}\begin{cases}-\mathrm{i}\gamma_\sigma g_{\mu\mu}=-\mathrm{i}g_{\mu\mu}\hat{\varGamma}_\sigma^\mathrm{V}&\mathrm{for}\ \mu=\tau\quad,\\+\mathrm{i}\gamma_\sigma g_{\mu\mu}=\mathrm{i}g_{\mu\mu}\hat{\varGamma}_\sigma^\mathrm{V}&\mathrm{for}\ \mu=\sigma\quad,\\\pm\mathrm{i}\hat{\varGamma}_\kappa^\mathrm{A},\kappa\neq\mu,\sigma,\tau&\mathrm{for}\ \mu\neq\tau\neq\sigma\quad,\end{cases}\end{eqnarray}\)”→“\(\begin{eqnarray}\begin{cases}-\mathrm{i}\gamma_\sigma g_{\mu\mu}=-\mathrm{i}g_{\mu\mu}\hat{\varGamma}_\sigma^\mathrm{V}&\mathrm{for}\ \mu=\tau\quad,\\+\mathrm{i}\gamma_\tau g_{\mu\mu}=\mathrm{i}g_{\mu\mu}\hat{\varGamma}_\tau^\mathrm{V}&\mathrm{for}\ \mu=\sigma\quad,\\\pm\mathrm{i}\hat{\varGamma}_\kappa^\mathrm{A},\kappa\neq\mu,\sigma,\tau&\mathrm{for}\ \mu\neq\tau,\sigma\quad,\end{cases}\end{eqnarray}\)” ちなみに、前提として \(\tau\neq\sigma\) となっている。
p.155 “\(\hat{\varGamma}_2^*=-\mathrm{i}\gamma_0\gamma_3=-\hat{\varGamma}_3\)”→“\(\hat{\varGamma}_3^*=-\mathrm{i}\gamma_0\gamma_3=-\hat{\varGamma}_3\)”
p.156 l.5 “\(=-\mathrm{i}(\gamma_0\gamma_2\gamma_0\gamma_1+\gamma_0\gamma_1\gamma_0\gamma_2)\)”→“\(=\mathrm{i}(\gamma_0\gamma_2\gamma_0\gamma_1+\gamma_0\gamma_1\gamma_0\gamma_2)\)”
p.157 “apllications”→“applications”
p.183 (8.1) “\(\mathrm{e}^{-\mathrm{i}(p_0-p_0')x^0/\hbar}\)”→“\(\mathrm{e}^{-\mathrm{i}p_\mu x^\mu/\hbar}\)”
(8.2) “\(\begin{align}\int\psi^{(+)\dagger}&(\boldsymbol{x},t)\psi^{(+)}(\boldsymbol{x},t)\mathrm{d}^3x\overset{!}{=}1\overset{!}{=}\int\mathrm{d}^3p\int\mathrm{d}^3p\sum_{\pm s}\sum_{\pm s'}\\\times&\sqrt{\frac{m_0c^2}{E}}\sqrt{\frac{m_0c^2}{E'}}b^\dagger(p,s)b(p',s')u^\dagger(p,s)u(p',s')\mathrm{e}^{-\mathrm{i}(p_0-p_0')x^0/\hbar}\\\times&\int\frac{\mathrm{e}^{\mathrm{i}(\boldsymbol{p}-\boldsymbol{p}')\cdot\boldsymbol{x}/\hbar}}{\sqrt{2\pi\hbar^3}\sqrt{2\pi\hbar^3}}\mathrm{d}^3x\end{align}\)”→“\(\begin{align}\int\psi^{(+)\dagger}&(\boldsymbol{x},t)\psi^{(+)}(\boldsymbol{x},t)\mathrm{d}^3x\overset{!}{=}1\overset{!}{=}\int\mathrm{d}^3p\int\mathrm{d}^3p'\sum_{\pm s}\sum_{\pm s'}\\\times&\sqrt{\frac{m_0c^2}{E}}\sqrt{\frac{m_0c^2}{E'}}b^\dagger(p,s)b(p',s')u^\dagger(p,s)u(p',s')\mathrm{e}^{\mathrm{i}(p_0-p_0')x^0/\hbar}\\\times&\int\frac{\mathrm{e}^{-\mathrm{i}(\boldsymbol{p}-\boldsymbol{p}')\cdot\boldsymbol{x}/\hbar}}{\sqrt{2\pi\hbar}^3\sqrt{2\pi\hbar}^3}\mathrm{d}^3x\end{align}\)”
“\(\displaystyle\exp\left(-\frac{\mathrm{i}}{\hbar}(p_0-p_0')x^0\right)=\exp\left(-\frac{\mathrm{i}}{\hbar}(E-E')\frac{x^0}{c}\right)\)”→“\(\displaystyle\exp\left(\frac{\mathrm{i}}{\hbar}(p_0-p_0')x^0\right)=\exp\left(\frac{\mathrm{i}}{\hbar}(E-E')\frac{x^0}{c}\right)\)”
p.185 (6) “\(\overleftarrow{\boldsymbol{\hat p}\hspace{-0.43em}/}{}_\mu^\dagger\)”→“\(\overleftarrow{\boldsymbol{\hat{p}}}{}_\mu^\dagger\)”
(9) “\(a^\mu\overrightarrow{\boldsymbol{\hat{p}}}{}^\mu\)”→“\(a_\mu\overrightarrow{\boldsymbol{\hat{p}}}{}^\mu\)”
p.186 (11) “\(\hat{\sigma}_{\mu\nu}\)”→“\({\hat{\sigma}^\mu}_\nu\)”
(1) “\(\mathrm{e}^{\mathrm{i}p_\mu x^\mu/\hbar}\)”→“\(\mathrm{e}^{-\mathrm{i}p_\mu x^\mu/\hbar}\)”
(2) “\(\hat{\alpha}_i\)”→“\(\hat{\alpha}^i\)”
p.187 (3) “\(\mathrm{e}^{-(\mathrm{i}/\hbar)(p'^i-p^i)x_i}\)”→“\(\mathrm{e}^{(\mathrm{i}/\hbar)(p'^i-p^i)x_i}\)”
l.6 “\(\displaystyle=\int\mathrm{d}^3p\frac{p_ic^2}{E}\sum_{\pm s}|b(p,s)|^2\)”→“\(\displaystyle=\int\mathrm{d}^3p\frac{p^ic^2}{E}\sum_{\pm s}|b(p,s)|^2\)”
“\(|\langle c^2p_i/E\rangle|<c\)”→“\(|\langle c^2p^i/E\rangle|<c\)” どちらでも良い気もします。
p.189(2) “\(b(p,s)u(p,s)\mathrm{e}^{-\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{x}/\hbar}+d^*(p,s)v(p,s)\mathrm{e}^{+\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{x}/\hbar}\)”→“\(b(p,s)u(p,s)\mathrm{e}^{-\mathrm{i}p_\mu x^\mu/\hbar}+d^*(p,s)v(p,s)\mathrm{e}^{+\mathrm{i}p_\mu x^\mu/\hbar}\)”
p.315 l.7 “\(\psi_n'(\boldsymbol x,t)=\hat{T}\psi_n(\boldsymbol x,t)\)”→“\(\psi_n'(\boldsymbol x,t')=\hat{T}\psi_n(\boldsymbol x,t)\)”
p.319 (9) “\(\hat T_0\cdot\hat T_0=\mathrm{i}\gamma^1\gamma^3\gamma^1\gamma^3\)”→“\(\hat T_0\cdot\hat T_0=\mathrm{i}\gamma^1\gamma^3\mathrm{i}\gamma^1\gamma^3\)”
(11) “\(\hat T\gamma^\mu\hat T\)”→“\(\hat T_0\gamma^\mu\hat T_0\)”
p.320 l.2 “\(=\psi^\dagger(t)\gamma_0\hat T_0\gamma^\mu\hat T_0\psi^*(t)\)”→“\(=\psi^\mathrm{T}(t)\gamma_0\hat T_0\gamma^\mu\hat T_0\psi^*(t)\)”
p.390 l.5 “\(0(4,C)\)”→“\(\mathrm{O}(4,C)\)”

0 件のコメント:

コメントを投稿